
Folgende chemische Verbindungen zeigten im drogenfreien und im mit Drogen versetzten Urin bis zu einer Konzentration von 100 µg/ml keine Kreuzreaktion mit dem LFM-Diganostika MEHRFACHDROGEN-BECHERTEST TE:

Acetaminophen, Acetylsalicsäure, Albumin, Amitryptilin, Ampicillin, Ascorbinsäure, Aspartam, Benzocain, Bilirubin, Chindin, Chlorpheniramin, Chloroquin, Dextromethorphan, Detrorphan, 4-Dimethylaminoantipyrin, Dopamin, Ethanol, (-)-Ephedrin, (+)-Ephedrin, Erythromycin, Furosemid, Glucose, Guajakolglycerinether, Hämoglobin, Ibuprofen, Imipramin, Isoproterenol, Koffein, Kreatinin, Lidocain, Naproxen, Oxalsaure, Pantoprazol, Penicillin, Pheniramin, Phenothiazin, B-Phenylethylamin, Procain, Pseudoephedrin, Quinacrin, Ranitidin, Sertralin, Tyramin, Trimeprazin, Venlafaxin

FARBENSKALA

Gemäß BtMVV sind Beigebrauchskontrollen in der Substitutionsbehandlung bei Drogenabhängigkeit vorgeschrieben und stichprobenartig durchzuführen. Werden diese mittels Urindrogenschnelltests durchgeführt, sind sie wie folgt abrechenbar:

Ziffer EBM	Parameter	Wert	Ziffer GOÄ	Wert
32137	Buprenorphin	3,05€	A4211	150 Punkte
32140	Amphetamin / Methamphetamin	3,05€	A4211	150 Punkte
32142	Benzodiazepine	3,05€	A4211	150 Punkte
32143	Cannabinoide	3,05€	A4211	150 Punkte
32144	Kokain	3,05€	A4211	150 Punkte
32145	Methadon / EDDP	3,05€	A4211	150 Punkte
32146	Opiate	3,05€	A4211	150 Punkte

Tabelle 2: Abrechnungsziffern EBM / GOÄ Urindrogenschnelltests

Der Höchstwert im Behandlungsfall für die Untersuchungen nach den Nummern 32137 bis 32148 beträgt im ersten und zweiten Quartal der substitutionsgestützten Behandlung 125,00 EURO (entspricht 41 Einzeltests a 3,05 €), ab dem dritten Quartal oder außerhalb der substitutionsgestützten Behandlung Opiatabhängiger 64,00 EURO (entspricht 21 Einzeltests a 3,05 €).

- 1. Tietz NW. Textbook of Clinical Chemistry. W.B. Saunders Company. 1986; 1735
- 2. Baselt RC. Disposition of Toxic Drugs and Chemicals in Man. 2nd Ed. Biomedical Publ., Davis, CA. 1982; 488 3. Hawks RL, CN Chiang. Urine Testing for Drugs of Abuse. National Institute for Drug Abuse (NIDA), Research Monograph 73, 1986
- 4. Tsai C. S.C. et.al., J. Anal. Toxicol. 1998: 22 (6): 474
- 5. Cody B, J.T., .Specimen Adulteration in drug urinalysis. Forensic Sci. Rev., 1990, 2:63.
- AGSA, Richtlinien für die Suchtstoffanalytik, 2006, www.cscq.ch/agsa
 Mikkelsen, S.L. et.al. Adulterants causing false negatives in illicit drug testing. Clin.Chem. 1988; 34(11): 2333-2336
- 8. Hardman J, Limbird LE (Eds). McGraw-Hill Publishing. 2001, 1010

SYMBOLE

Seite 5 von 5

3 I MD	JLL					
[]i	Gebrauchsanweisung beachten	verwendbar bis	(2)	nicht zur Wiederverwendung	IVD	In-vitro-Diagnostika
LOT	Chargenbezeichnung	Temperaturbereich bei Lagerung	***	Hersteller	CE	CE-Kennzeichnung

LFM-Diagnostika oHG • Spessartstraße 9 • D-97082 Würzburg

Fon: + 49 (0) 931 - 4 60 74 27 Fax: + 49 (0) 800 - 271 13 33 eMail: info@LFM-Diagnostika.de Internet: www.LFM-Diagnostika.de

 \square :

0

PRODUKTINFORMATION & ARBEITSANLEITUNG MEHRFACHDROGEN-BECHERTEST TE

ARTIKELNUMMER: LF-D07TE06, LF-D07TE07

VERWENDLINGS7WECK

Der LFM-Diagnostika MEHRFACHDROGEN-BECHERTEST TE erlaubt die schnelle und qualitative Bestimmung von Drogen, Medikamenten und / oder ihren Metaboliten im menschlichen Urin. Zusätzlich werden mittels Testfelder mögliche Verdünnungen und / oder Verfälschungen der Urinprobe überprüft.

Abkürzung	Droge / Medikament / Metabolit	Cut-off
AMP 500	Amphetamin	500 ng/ml
BZO 300	Benzodiazepine	300 ng/ml
BUP 10	Buprenorphin	10 ng/ml
COC 150	Kokain / Benzoylecgonin	150 ng/ml
EDDP 100	2-Ethyliden-1,5-Dimethyl-3,3-Diphenylpyrrolidin (Methadonmetabolit)	100 ng/ml
MOP 300	Opiate	300 ng/ml
THC 50	Cannabinoide	50 ng/ml

Tabelle 1: Nachweisbare Substanzen / Substanzgruppen und deren Entscheidungsgrenzen (Cut-off)

Das Testsystem besteht aus einem Urinbecher mit integrierten Teststreifen zum Nachweis von Drogen, Testfelder zum semi-guantitativen Nachweis von möglichen Verdünnungen oder Verfälschungen der Urinprobe, einem Temperaturetikett sowie einem Deckel mit Transfereinheit (TE).

Der LFM-Diagnostika MEHRFACHDROGEN-BECHERTEST TE liefert nur ein vorläufiges Ergebnis. Zur Bestätigung wird der Einsatz einer alternativen chemischen Nachweismethode empfohlen, besonders dann, wenn ein positives Testergebnis vorliegt. Die Gaschromatographie in Kombination mit einem Massenspektrometer (GC/MS) oder die Flüssigchromatographie gekoppelt mit mehreren Massenspektrometer Einheiten (LC/MS/MS) sind dabei die bevorzugten Bestätigungsmethoden. Auch die klinische Beurteilung und eine fachkundige Bewertung sollten in jede Interpretation eines Urindrogentestergebnisses mit einfließen.

Der LFM-Diagnostika MEHRFACHDROGEN-BECHERTEST TE ist ein chromatographischer "lateral flow" Immunoassay, der auf dem Prinzip der kompetitiven Bindung beruht. Während des Testablaufs wandert die Urinprobe durch Kapillarkräfte aufwärts und trifft auf monoklonale Antikörper-Gold-Komplexe. Sind keine Drogen in der Probe enthalten, wandert der farbmarkierte Antikörper durch die Membran und trifft in der Testregion auf das immobile Drogenkonjugat (Antigen-BSA), bindet daran und bildet eine sichtbare Linie. Eine Droge, die unterhalb der Entscheidungsgrenze (Cutoff) in der Urinprobe enthalten ist, wird die Bindungsstellen der Antikörper nicht sättigen. Die nicht gebundenen Antikörper-Gold-Komplexe binden im Bereich der Testregion an die Drogenkonjugate und bilden ebenfalls eine farbige Testlinie (T). Sind jedoch Drogenmoleküle im Urin enthalten, deren Konzentration hoch genug ist, die Bindungsstellen vollständig zu besetzen, wird die Bindung der farbigen Antikörper-Gold-Komplexe am Drogenkonjugat in der Testregion verhindert und es entsteht keine Testlinie. Eine farbige Kontrolllinie (C) wird immer erscheinen und dient damit als Verfahrenskon trolle, die ein korrekt zugefügtes Probenvolumen und eine erfolgte Membrandurchfeuchtung anzeigt.

Der LFM-Diagnostika MEHRFACHDROGEN-BECHERTEST TE enthält neben den Drogentests sechs chemisch behandelte Testfelder. Damit können Verfälschungen und / oder Verdünnungen des Urins erkannt werden. Nach Aktivierung durch die Urinprobe können die auf den Testbereichen entstandenen Farben mit der mitgelieferten Farbenskala veralichen werden. Der Farbvergleich liefert ein semi-quantitatives Ergebnis für

Glutaraldehyd (GLUT):

Auf dem Reaktionsfeld reagiert die Aldehygruppe des Glutaraldehyds mit einem Indikator zu einem pink/lila Farbkomplex. Glutaraldehyd ist normalerweise nicht im Urin zu finden, kann jedoch Bestandteil von kommerziell erhältlichen Verfälschungsmitteln sein.

Kreatinin (CREA):

Auf dem Reagenzfeld reagiert Kreatinin mit einem Kreatininindikator unter alkalischen Bedingungen zu einem braunen Farbkomplex. Die Kreatininkonzentration ist direkt proportional zur Farbintensität des Testfeldes. Kreatinin ist ein Abbauprodukt von Kreatin, einer or

ganischen Säure, die u.a. zur Versorgung der Muskeln mit Energie beiträgt. Kreatinin ist ein harnpflichtiges Stoffwechselprodukt und muss als solches über den Urin ausgeschieden werden. Die Konzentration des Kreatinins im Urin wird gewöhnlich als allgemeine Kenngröße der Urinkonzentration betrachtet. Für die Drogenanalytik ist insbesondere die Aufdeckung "dünner" oder verdünnter Urine von Bedeutung. Drogenkonsumenten versuchen nicht selten durch In-vitro- oder In-vivo-Ürinverdünnung (Wasserbeimengung zum Urin oder Aufnahme großer Flüssigkeitsvolumina) die Drogen- und/oder Drogenmetabolitenkonzentrationen unter den Nachweis- bzw. Entscheidungsgrenzen zu halten. Gemäß den SAMHSA Richtlinien spricht eine Kreatinin-Urinkonzentration von < 10 ma/dl für einen verdünnten Urin. Das Fehlen von Kreatinin (< 5 mg/dl) ist ein Indikator dafür, dass die Probe nicht mit Humanurin übereinstimmt.

Nitrit (NIT)

Auf dem Reaktionsfeld reagiert Nitrit mit einem aromatischen Amin zu einer Diazoniumverbindung in saurem Medium. Diese Diazoniumverbindung reagiert mit einem Indikator zu einem pink/purpurroten Farbstoff. Üblicherweise enthält Urin kein Nitrit, jedoch in unterschiedlicher Konzentration (nahrungsabhängig) Nitrat. Verschiedene gramnegative Bakterien sind in der Lage, Nitrat in Nitrit umzuwandeln. Nitritkonzentrationen zwischen 12 und 20 ma/dl weisen auf eine Infektion der ableitenden Harnwege hin. Nitritkonzentrationen von > 50 mg/dl sind ein Hinweis auf eine Manipulation des Urins.

Oxidantien (OXI)

Im Testfeld reagiert ein farbiger Indikator mit oxidierenden Reagenzien wie Bleichmitteln, Wasserstoffperoxid oder Pyridiniumchlorchromat und bildet einen blauen Farbkomplex aus. Oxidantien und Pyridiniumchlorchromat sind normalerweise nicht im Urin zu finden, sind jedoch häufig Bestandteile von kommerziell erhältlichen Verfälschungmitteln.

:(Ha) Ha

Der pH-Wert von 7.0 gilt als neutral, tiefere pH-Werte kennzeichnen einen sauren Urin, höhere pH-Werte einen basischen Urin. Der pH-Wert des Urins liegt bei normaler Ernährung zwischen 4,6 und 7,5, also eher im sauren Bereich

Spezifisches Gewicht (SG):

Der Normbereich des spezifischen Gewichts des Urins erstreckt sich von 1.003 bis 1.030. Werte von < 1.003 bei gleichzeitiger Kreatinin-Urinkonzentration < 10 mg/dl sprechen für eine Verdünnung des

Der LFM-Diagnostika MEHRFACHDROGEN-BECHERTEST TE enthält zum Nachweis der Drogen monoklonale Antikörper (Maus) und das entsprechende Drogenkonjugat (Antigen-BSA). Für die Kontrolllinie wird ein Ziegen-Antikörper eingesetzt.

Es werden ein einzeln eingepackter LFM-Diagnostika MEHRFACHDROGEN-BECHERTEST TE mit Temperaturetikett, eine Farbenskala und eine Gebrauchsanweisung geliefert. Zusätzlich benötigen Sie einen Kurzzeitmesser und ein Vakuumröhrchen zum hygienisch sauberen Transfer der Urinprobe.

VORSICHTSMASSNAHMEN

- Der LFM-Diganostika MEHRFACHDROGEN-BECHERTEST TE ist ein In-vitro-Diagnostikum und deshalb nur für den professionellen Einsatz durch medizinisches und geschultes Fachpersonal vorgesehen.
- Bis zum Gebrauch muss der Urindrogentest in der Schutzverpackung verbleiben. • Der Test darf nach Ablauf des Haltbarkeitsdatums oder bei beschä-
- digter Schutzverpackung nicht mehr verwendet werden.
- Urinproben können infektiös sein und sind deshalb mit entsprechender Vorsicht zu behandeln
- Benutzte Urindrogentests sind entsprechend den örtlichen Bestimmungen zu entsorgen.

LAGERUNG UND HALTBARKEIT

Der Urindrogentest muss in der verschlossenen Folienverpackung bei einer Temperatur von 2°C bis 30°C gelagert werden und ist bis zum aufgedruckten Haltbarkeitsdatum verwendbar. Der Test darf nicht eingefroren werden. Setzen Sie die Testbecher keiner direkten Sonneneinstrahlung aus.

Rev.: 20241130 02

HFÜHRI

ACHTUNG: Warnen Sie den Patienten davor, das Sicherheitsetikett auf dem Deckel zu entfernen. Die integrierte Transfereinheit enthält eine scharfe Nadel, die bei unsachgemäßen Gebrauch zu Verletzungen führen kann.

TESTDURCHFÜHRUNG

- Sammeln Sie den Urin im Drogentestbecher. Es werden mindestens 30ml Urin benötigt (Minimum-Linie). Verschließen Sie den Becher indem Sie den Deckel im Uhrzeigersinn drehen, bis Sie ein leichtes "Click"-Geräusch hören.
- Prüfen Sie die Temperatur der Urinprobe auf dem Temperaturetikett innerhalb von 4 Minuten. Diese sollte zwischen 32°C 38°C liegen.
- Entfernen Sie das blaue Abziehetikett am Becher und kontrollieren Sie nach 3-5 Minuten zuerst die Verfälschungsparameter mit der mitgelieferten
- Lesen Sie das Drogentestergebnis nach 5-10 Minuten ab. Nach über 10 Minuten darf der Test nicht mehr ausgewertet werden.
- Für Transport und / oder Lagerung des Urins befüllen Sie nun das Vakuumröhrchen. Entfernen Sie dazu zunächst das weiße Sicherheitsetikett auf der Oberseite des Deckels, um die intergrierte Transfereinheit zugängig zu machen. Drücken Sie nun das Vakuumröhrchen in die Transfereinheit bis die Röhrchenkappe vollständig durchstoßen ist. Halten Sie das Rörchen in dieser Position, bis kein Urin mehr fließt. Hinweis: Sollte sich das Vakuumröhrchen nicht selbständig befüllen, verwenden Sie bitte ein neues Röhrchen.

TESTAUSWERTUNG

VERFÄLSCHUNGSTESTPARAMETER

Sie erhalten semi-quantitative Ergebnisse durch direkten Farbvergleich. Vergleichen Sie dazu jedes Testfeld mit den entsprechenden Farbfeldern auf der mitgelieferten Farbenskala. Farbwechsel, die nach mehr als 5 Minuten eintreten, haben keinen diagnostischen Wert. Bitte beachten Sie, dass ein negatives Ergebnis des Drogenscreenings nicht akzeptiert werden kann

- bei einem pH-Wert von < 4 oder > 9
- beim Nachweis von Oxidantien / Pyridiniumchlorchromat, Glutaraldehyd und / oder Nitrit in der Urinprobe
- bei Kreatinin-Urinkonzentrationen von < 10 mg/dl und einer Dichte von < 1.003

DROGENTEST

Es befinden sich sechs bzw. sieben Reaktionsfelder für den Nachweis von Drogen / Medikamenten und /oder deren Metaboliten auf jedem Test mit einem Bereich für die Testlinie der nachzuweisenden Substanz (T) sowie einem Bereich für die Kontrolllinie (C).

Negatives Ergebni

Es erscheinen 2 Linien pro Sichtfenster, eine rote Kontrolllinie (C) und eine rote Testlinie (T). Dieses negative Ergebnis zeigt an, dass keine Droge / Medikamente und /oder deren Metabolit im Urin ist oder dass die Konzentration dieser Droge unterhalb des Cut-offs liegt. Hinweis: Die Farbintensität der Testlinie (T) kann variieren und muss nicht die gleiche Stärke wie die Kontrolllinie haben. Auch eine schwache Testlinie muss als negatives Ergebnis gewertet werden.

Positives Ergebnis

Es erscheint eine rote Kontrolllinie (C). Im Testbereich (T) erscheint keine Linie. Dieses positive Ergebnis zeigt an, dass die Drogen-, Medikamenten- und / oder Metabolitenkonzentration in der Urinprobe die festgelegte Entscheidungsgrenze übersteigt.

Ungültiges Ergebnis

Es erscheint keine rote Kontrolllinie (C). Unzureichendes Probenvolumen oder eine inkorrekte Verfahrenstechnik sind die wahrscheinlichsten Gründe dafür. Falls das Problem auch mit einem neuen Test weiterbesteht, darf die Charge nicht weiter verwendet werden.

EINSCHRÄNKUNGEN

DROGENTEST

- Der LFM-Diagnostika MEHRFACHDROGEN-BECHERTEST TE ist ein In-vitro-Diagnostikum und deshalb nur für den professionellen Einsatz durch medizinisches und geschultes Fachpersonal vorgesehen. Er sollte nur für den gualitativen Drogennachweis verwendet werden.
- Der LFM-Diagnostika MEHRFACHDROGEN-BECHERTEST TE liefert nur ein vorläufiges Testergebnis. Zur Bestätigung ist der Einsatz einer alternativen chemischen Nachweismethode erforderlich. Die Gaschromatographie in Kombination mit einem Massenspektrometer (GC/MS) oder die Flüssigchromatographie gekoppelt mit mehreren Massenspektrometer Einheiten (LC/MS/MS) sind dabei die bevorzugten Bestätigungsmethoden. Auch die klinische Beurteilung und eine fachkundige Bewertung sollten in jede Interpretation eines Urindrogentestergebnisses mit einfließen.
- Verfälschungsmittel in Urinproben können unabhängig von der verwendeten analytischen Methode fehlerhafte Ergebnisse erzeugen.
- Es ist möglich, dass technische oder verfahrensbedingte Fehler ebenso wie störende Substanzen ein fehlerhaftes Ergebnis verursachen.
- Ein positives Drogentestergebnis zeigt das Vorhandensein der Droge oder deren Stoffwechselprodukte an, nicht aber die Konzentration im Urin, die Verabreichungsart oder den Grad einer etwaigen Intoxikation.
- Ein negatives Drogentestergebnis bedeutet nicht unbedingt, dass der Urin drogenfrei ist. Negative Ergebnisse können auch auftreten, wenn eine im Urin vorhandene Droge unterhalb des Cut-off liegt.
- Der Drogentest unterscheidet nicht zwischen Drogen und Medikamenten.

VERFÄLSCHUNGSTEST

- Die Verfälschungstests sind als Hilfe zum Erkennen von verfälschten Urinproben gedacht. Obwohl viele mögliche Verfälschungen erfasst werden, können diese Tests nicht alle Verfälschungsmittel nachweisen⁷.
- Kreatinin: Normale Kreatininwerte liegen zwischen 20 und 350 mg/dl. Unter bestimmten Bedingungen verursachen einige Nierenerkrankungen verdünnten Urin⁸.
- Nitrit ist kein Bestandteil menschlichen Urins. Nitrit im Urin kann Entzündungen des Harntraktes anzeigen. Nitritwerte > 20 mg/dl können falsch positive Glutaraldehyd Ergebnisse hervorrufen.
- Glutaraldehyd ist normalerweise nicht im Urin vorhanden. Stoffwechselabnormitäten wie Ketoacidose (Fasten, unkontrollierte Diabetes oder stark proteinhaltiae Diäten) können die Testergebnisse stören.
- Spezifisches Gewicht (Dichte): Erhöhte Proteinwerte im Urin können anormal hohe Dichte verursachen.
- Oxidantien/PCC: Menschlicher Urin sollte keine Oxidantien enthalten. Hohe Konzentrationen von Reduktionsmitteln (z.B. Ascorbinsäure) in der Probe können falsch negative Resultate des Oxidantien-Tests zur Folge haben.

QUALITÄTSKONTROLLE

DROGENTEST

Eine sichtbare rote Kontrolllinie (C) wird als interne Verfahrenskontrolle betrachtet. Sie bestätigt ausreichendes Probenvolumen, eine entsprechende Membrandurchfeuchtung und eine korrekte Testdurchführung.

Es wird empfohlen, mittels Kontrollstandards positive und negative Kontrollen durchzuführen und damit das Testverfahren und einen einwandfreien Testablauf zu bestätigen.

VERFÄLSCHUNGSTEST

Seite 2 von 5

Kontrollstandards sind nicht im Lieferumfang enthalten. Dennoch ist zu empfehlen, dass Positiv- und Negativkontrollen zur Qualitätskontrolle durchgeführt werden.

TESTEIGENSCHAFTEN

Richtigkeit, Nachweisgrenze und analytische Sensitivität, analytische Spezifität und unerwünschte Kreuzreaktivität (Interferenzen mit Medikamenten und / oder deren Abbauprodukte) wurden in mehreren Studien überprüft. Die Ergebnisse sind in nachfolgenden Tabellen dargestellt:

														Α	MPH	HET <i>A</i>	MIN	I (Al	MP)	500
Hintergrund	Raus	chmitte	l ist Ar	npheta	min au	grund	der Un	terdrü	kung v	on Mü	digkeit									
T ^{1/2} Elimination ⁶ / Mittlere Nachweisdauer im Urin ¹	10 - 3	0 Stun	den / 1	1 - 3 Ta	ge															
Erwartete maximale Urinkonzentration ²	> 20.0	000 ng	/ml																	
Bezugssubstanz / Entscheidungsgrenze	d-Ar	d-Amphetamin / 500 ng/ml																		
Richtigkeit	mit GC/MS: 98,0 %																			
	d-Am	pheta	nin						500 n	g/ml	Phen	termin						1	l.250 n	g/ml
Analytische Spezifität	3,4 M	ethyler	ndioxy	amphe	tamin (MDA)			625 n	g/ml	d-Am	pheta	min					50).000 n	g/ml
	Parar	netho	cyamp	hetam	ine				625 n	g/ml	Tyran	nin						>100).000 n	g/ml
Unerwünschte Kreuzreaktivität (Interferenzen)	(z.B.	Antiob	es®),	Oxetad	ain (z															
Partyszene ver T¹² Elimination⁵ / Mittlere Nachweisdauer im Urin¹ 10 - 30 Stunde Erwartete maximale Urinkonzentration² > 20.000 ng/m Bezugssubstanz / Entscheidungsgrenze d-Amphetal mit GC/MS: 98 d-Amphetamin Analytische Spezifität 3,4 Methylendi Paramethoxys Unerwünschte Kreuzreaktivität (Interferenzen) (z.B. Antiobes Käse), V.a. Cip Nachweisgrenze und Analytische Sensitivität *	Cut-off			-25%	Cut-off			Cu	t-off			+25%	Cut-off			+50%	Cut-off			
Thachweisgrenze und Analytische Sensitivität	-	50	+	0	-	50	+	0	-	14	+	36	-	0	+	50	-	0	+	50

* Drogenfreie Urine wurden mit Drogen verschiedener Konzentrationen (Cut-off, ± 50% Cut-off und ± 25% Cut-off) versetzt. Dabei ergaben sich die aufgeführten Messresultate.

													В	ENZ	ODI.	AZEI	PINI	E (B	ZO) :	300
	vuls	iv wirke	n. Sie	binder	alle	e an GA		eptore	n, den	wichtig	gster	inhibito	rischer							
T ^{1/2} Elimination ⁶ / Mittlere Nachweisdauer im Urin ¹	20 -	40 Stur	nden D	iazepa	m /	1 - 4 Tag	e, bei La	ngzei	teinnah	me me	ehrer	e Woche	en							
Erwartete maximale Urinkonzentration ²	> 5.0	000 ng/	ml																	
Bezugssubstanz / Entscheidungsgrenze	Oxa	azepa	m / 30	00 ng	/ml															
Richtigkeit	mit (GC/MS:	93,9 %	0																
	Clol	bazam							63 n	ıg/ml	Ch	lordiaze	poxid					- :	2.500 n	g/ml
	Tem	nazepar	n						63 n	ıg/ml	CI	omazep	am					2	2.500 n	g/ml
	Alpı	razolan	n						125 n	ıg/ml	CI	orazepa	t					;	3.330 n	g/ml
	Des	alkylflu	ırazepa	ım					250 n	ıg/ml	Es	tazolam							5.000 n	g/ml
	Diaz	zepam							250 n	ıg/ml	Tri	azolam							5.000 n	g/ml
	Nor	chlordi	azepox	cid					250 n	ıg/ml	Ni	razepar	n					2	5.000 n	g/ml
Analytische Spezifität	Oxa	zepam							300 n	ıg/ml	Fe	ntanyl		2.500 ng 2.500 ng	g/ml					
	Flur	nitrazep	oam						375 n	ıg/ml	Flu	ırazepaı	m					> 100).000 n	g/ml
	Nor	diazepa	am	63 ng/ml Chlordiazepoxid 2.500 n 63 ng/ml Clomazepam 2.500 n 125 ng/ml Clorazepat 3.330 n 250 ng/ml Estazolam 5.000 n 250 ng/ml Triazolam 5.000 n 250 ng/ml Nitrazepam 25.000 n 300 ng/ml Fentanyl >100.000 n 375 ng/ml Flurazepam >100.000 n 500 ng/ml Medazepam >100.000 n 625 ng/ml Prazepam >100.000 n 1.250 ng/ml Prazepam >100.000 n	g/ml															
	Bro	mazepa	am						625 n	ıg/ml	Mi	dazolan	1					> 100).000 n	g/ml
	d,I L	orazep	oam						1.250 n	ıg/ml	Pr	azepam						> 100).000 n	g/ml
	Lori	metaze	pam						1.250 n	ıg/ml										
Unerwünschte Kreuzreaktivität (Interferenzen)	Fen	tanyl																		
N - 1 45 - 1 - 0 - 145 44 *		-50%	Cut-off			-25%	Cut-off			Cu	ıt-off			+25%	Cut-of	f		+50%		i
Nachweisgrenze und Analytische Sensitivität *	-	50	+	0	١.	- 50	+	5	-	17	+	33	-	0	+	50	-	0	+	50

* Drogenfreie Urine wurden mit Drogen verschiedener Konzentrationen (Cut-off, ± 50% Cut-off und ± 25% Cut-off) versetzt. Dabei ergaben sich die aufgeführten Messresultate.

														BU	PRE	NOF	RPH	IN (B	UP)	10
Hintergrund	und a	als Su m-Alk	bstitution	onsmitt hebain	el in de herge:	er Thera stellt. E	apie ein	er Abh mit h	nängigl oher A	eit vor ffinität	n Opioi agonis	den ver stisch a	wend	et. Bup	enorph	nin wird	halbs	eprägter ynthetis intagoni	ch aus	dem
T ^{1/2} Elimination ⁶ / Mittlere Nachweisdauer im Urin ¹	9 - 69 Stunden / 4 - 6 Tage																			
Erwartete maximale Urinkonzentration ²	< 1.000 ng/ml																			
Bezugssubstanz / Entscheidungsgrenze	Buprenorphin-3-D-Glucuronid / 10 ng/ml																			
Richtigkeit	mit L	C/MS	: 100 %	1																
A - 1 4: - 1 - C : 54: 4	Bupr	enor	phin						10 r	ıg/ml	Norb	upren	orphir	1					50 ng	g/ml
Analytische Spezifität	alytische Spezifität Buprenorphin-3-D-Glucuronid									ıg/ml	Nort	upren	orphir	1 3-D-G	lucuro	nid			100 n	g/ml
Unerwünschte Kreuzreaktivität (Interferenzen)	V.a. 1	Trime	thoprir	n (z.B.	Cotrin	1®)														
		-50%	6 Cut-o	f		-25%	Cut-off			Cı	ıt-off			+25%	Cut-of	F		+50% (Cut-off	
Nachweisgrenze und Analytische Sensitivität *	-	50	+	0	-	50	+	0	-	25	+	25	-	0	+	50	-	0	+	50

* Drogenfreie Urine wurden mit Drogen verschiedener Konzentrationen (Cut-off, ± 50% Cut-off und ± 25% Cut-off) versetzt. Dabei ergaben sich die aufgeführten Messresultate.

Seite 3 von 5

	CANNABINOIDE (THC) 5																			
														C	ANN	ABIN	IOI	DE (ТНС	50
	Shit) (THC	oder M). Durc	larihua th Oxyd	na (Gra	der Hant as) als Ra an C-11 n werden	ausch (und	nmittel	konsı	ımiert v	verden	. Hau	uptwirkst	off der	Canna	bispfla	nze ist	das Te	etrahyd	Irocann	abinol
^{/2} Elimination ⁶ / Mittlere Nachweisdauer im Urin ¹	20 - 3	0 Stun	den (T	HC-Ca	rbonsäur	e) / 3	- 10 T	age, b	ei Lan	gzeiteir	nnahr	me mehr	ere Wo	ochen						
wartete maximale Urinkonzentration ²	> 50 ng/ml																			
ezugssubstanz / Entscheidungsgrenze	11-nor-Δ ^s -Tetrahydrocannabinol-9 COOH (THC) / 50 ng/ml																			
chtigkeit	mit GC/MS: 97,5 %																			
	11-nc	or-Δ ⁸ -T	HC-9 (юон					50 n	ıg/ml	Δ9-	Tetrahyo	Irocan	nabin	ol			1:	5.000 r	ıg/ml
	11-nc	r-Ƽ-Tl	-IC-9 С	ООН					50 n	ıg/ml	Car	nnabino						2	0.000 r	ıg/ml
nalytische Spezifität	11-hy	droxy	-Δº-Tet	rahydı	ocannal	oinol			50 n	ıg/ml	Car	nnabidio	ol					> 10	0.000 r	ıg/ml
	Δ ⁸ -Te	trahyd	Irocan	nabino	ı			1	5.000 n	ıg/ml										
nerwünschte Kreuzreaktivität (Interferenzen)	Efavi	renz (z	.B. S u	stiva®)															
		-50%	Cut-off		-2	5% C	Cut-off			Cu	t-off			+25%	Cut-off			+50%	Cut-of	f
achweisgrenze und Analytische Sensitivität *	-	50	+	0	-	50	+	0	-	17	+	33	-	0	+	50	-	0	+	50
						_					_	_								

* Drogenfreie Urine wurden mit Drogen verschiedener Konzentrationen (Cut-off, ± 50% Cut-off und ± 25% Cut-off) versetzt. Dabei ergaben sich die aufgeführten Messresultate.

	2-Ethylid	len-1,5-Dim	ethyl-3,3-Diphenylpyı	rrolidin (EDDP) 100										
Hintergrund	Methadon ist ein vollsynthetisches O Agonist am μ-Opioid-Rezeptor. Sowohl rechtsdrehendem Methadon (synonym: hängiger eingesetzt. Methadon wird in	DL-Methadon,	(L-Polamidon®) als auch das Methadon-Racemat) werden											
Erwartete maximale Urinkonzentration ²	1.000 ng/ml													
T ^{1/2} Elimination ⁶ / Mittlere Nachweisdauer im Urin ¹	15 - 55 Stunden / Methadon 1,5 - 3 Tage, EDDI	P 3 - 4 Tage												
Bezugssubstanz / Entscheidungsgrenze	2-Ethyliden-1,5-Dimethyl-3,3-Diphenylpyrrolidin (EDDP) / 100 ng/ml													
Richtigkeit	mit GC/MS: 98,1 %													
	EDDP	100 ng/ml	Methadon	> 100.000 ng/ml										
Analytische Spezifität	Promethazin	25.000 ng/ml	Norfentanyl	> 100.000 ng/ml										
Analytische Spezifikat	Promazin	50.000 ng/ml	Phencyclidin	> 100.000 ng/ml										
	Prothipendyl	50.000 ng/ml	Pethidin	> 100.000 ng/ml										
Unerwünschte Kreuzreaktivität (Interferenzen)	Promazin (Protactyl®), Promethazin (Atosil®	®), Prothipendyl ([Dominal®), Pethidin (Dolantin®),	Norfentanyl, Phencyclidin										
Nachweisgrenze und Analytische Sensitivität *	-50% Cut-off -25% Cut-off	Cu	t-off +25% Cut-off	+50% Cut-off										
Tractiweisgrenze und Analytische Sensitivität	- 50 + 0 - 50 +	0 - 25	+ 25 - 0 +	50 - 0 + 50										

* Drogenfreie Urine wurden mit Drogen verschiedener Konzentrationen (Cut-off, \pm 50% Cut-off und \pm 25% Cut-off) versetzt. Dabei ergaben sich die aufgeführten Messresultate.

				KOKAIN (COC) 150 Kokain ist ein starkes Stimulans. Es findet weltweit Anwendung als Rauschdroge mit hohem psychischem Abhängigkeitspotenzial															150	
Hintergrund	Kokai	in-Hyd	rochlo	rid kan	n intra	nasal (Schnu	pfen, "	Zieher	n") ode	r intra		konsu	miert v	verden	Coca	paste,	die frei		
Erwartete maximale Urinkonzentration ²	< 10.0	000 ng	/ml																	
T ^{1/2} Elimination ⁶ / Mittlere Nachweisdauer im Urin ¹	0.5 - 1.5 Stunden Cocain, 3.5 - 8 Stunden Benzoylecgonin / 4 - 12 Stunden Cocain, 1 - 4 Tage Benzoylecgonin																			
Bezugssubstanz / Entscheidungsgrenze	Benzoylecgonin / 150 ng/ml																			
Richtigkeit	mit GC/MS: 95 %																			
Analyticalna Chariffi it	Koka	in							125 n	ıg/ml	Ecgo	onin						10	.000 n	ıg/ml
Analytische Spezifität	Benz	oylecg	onin						150 n	ıg/ml	Ecgo	onin Me	ethyle	sther				> 10	.000 n	ıg/ml
Unerwünschte Kreuzreaktivität (Interferenzen)	bishe	er kein	e bek	annt																
		-50%	Cut-of	f		-25%	Cut-off			Cu	t-off			+25%	Cut-of	f		+50%	Cut-off	ł
Nachweisgrenze und Analytische Sensitivität *	-	50	+	0	-	50	+	0	-	24	+	26	-	0	+	50	-	0	+	50

* Drogenfreie Urine wurden mit Drogen verschiedener Konzentrationen (Cut-off, ± 50% Cut-off und ± 25% Cut-off) versetzt. Dabei ergaben sich die aufgeführten Messresultate.

																OP	IATI	E (M	OP)	300
	herge	stellt	durch e		nemisc											erum) ((Estera				
Erwartete maximale Urinkonzentration ²	> 10.0	000 ng	g/ml																	
T ^{1/2} Elimination ⁶ / Mittlere Nachweisdauer im Urin ¹	1-7h	n Mor	ohin / 2	- 3 Tag	je															
Bezugssubstanz / Entscheidungsgrenze	Morp	ohin	/ 300	ng/m	ı															
Richtigkeit	mit G	C/MS	97,3 %	6																
•	Acety	lcode	ein						150 n	ıg/ml	Morp	hin-3-	glucur	onid				1	2.500 r	ıg/ml
	Ethylr	norpl	nin						200 n	ıg/ml	Bupi	renorpl	nin					;	3.125 r	ıg/ml
	Code	in							250 n	ıg/ml	Hydi	ocodo	n					1:	2.500 r	ıg/ml
Analytische Spezifität	Diace	tylmo	orphin						250 n	ıg/ml	Hydi	omorp	hon					13	2.500 r	ıg/ml
	6-Mor	noace	tylmoi	rphin					250 n	ıg/ml	Nalo	rphin						2	5.000 r	ıg/ml
	Morp	hin							300 n	ıg/ml	Theb	ain						2	5.000 r	ıg/ml
	Dihyd	Iroco	dein						586 n	ıg/ml										
Unerwünschte Kreuzreaktivität (Interferenzen)	Bupre	enorp	hin (z.	B. Sub	utex®															
Nachweisgrenze und Analytische Sensitivität *		-50%	Cut-of	f		-25% (Cut-off			Cu	t-off			+25%	Cut-o	ff		+50%	Cut-of	
	-	50	+	0	-	50	+	0	-	18	+	32	-	0	+	50	-	0	+	50
* Draganfraia Urina wurden mit Dragan verschiedener	Konzo	ntrati	onon II	Cut off	+ 50	% Cut o	ff und	+ 250	% Cut	off) vo	rcotat	Dahoi	raaba	n cick	dio a	,faofüb	rton M	occrocu	Itata	

* Drogenfreie Urine wurden mit Drogen verschiedener Konzentrationen (Cut-off, ± 50% Cut-off und ± 25% Cut-off) versetzt. Dabei ergaben sich die aufgeführten Messresultate